Новости и события » Общество » Есть ли жизнь после LHC? Европейцы покушаются на основы физического мира

Есть ли жизнь после LHC? Европейцы покушаются на основы физического мира

Есть ли жизнь после LHC? Европейцы покушаются на основы физического мира

К концу 2030-х годов на смену Большому адронному коллайдеру (БАК) придет Будущий циклический коллайдер. Для него посреди Европы построят кольцевой тоннель длиной сто километров. Без такой установки невозможно досконально исследовать бозон Хиггса и найти новую физику, уверяют ученые. Ускоритель задействует принцип crab waist, в разработку которого большой вклад внесли российские физики. РИА Новости вместе с соавторами изобретения рассказывает о новом мегапроекте Европейского центра ядерных исследований (ЦЕРН).

Наследник БАК

Официально о планах строить новый коллайдер ЦЕРН объявил в 2014 году. В конце года ожидается публикация физобоснования (conceptual design report), где воедино будут собраны и проверены на непротиворечивость ключевые принципы работы ускорителя, технические и научно-исследовательские задачи. Это обязательный предварительный этап перед проектированием любой крупной физической установки.

Будущий циклический коллайдер (Future Circular Collider, FCC) представляет собой фабрику по производству событий, в которых рождается бозон Хиггса. Эта частица (она же поле Хиггса) наделяет массой другие элементарные частицы, образующие обычную материю.

Ее предсказали в 1960-х, а в 2012-м обнаружили - на БАК. Первооткрыватели частицы Питер Хиггс и Франсуа Энглером удостоились Нобелевской премии. Теперь физики хотят знать, как именно приобретается масса через механизм Хиггса, в том числе самим одноименным бозоном. Чтобы ответить на эти вопросы, нужно набирать статистику, а это требует регистрации большего числа событий.

Высокие параметры, новые задачи

Основными характеристиками коллайдеров служит светимость - число соударений частиц с мишенью или пучком встречных частиц, а также их энергия. В июле БАК начали модернизировать, чтобы поднять к 2026 году светимость в десять раз - до 10 35 см −2 *с −1.

Интегральная светимость FCC на порядок превысит этот параметр на БАК, а рабочая энергия в столкновениях протонных пучков - в семь раз. За 25 лет работы на фабрике получат 10 10 рождений бозона Хиггса - в сто раз больше, чем на БАК. Статистика позволит выделить сигналы из фона, который так мешает физикам.

Высокая светимость и производительность FCC увеличат вероятность зафиксировать рождение тяжелых Z и W калибровочных бозонов, ответственных за слабое взаимодействие, гипотетических частиц гейджино, скварков, предсказанных теориями суперсимметрии. Авторы проекта рассчитывают проникнуть в тайну темной материи и нащупать новую физику, выходящую за границы Стандартной модели.

"Новая физика - это не только движение ко все более высоким энергиям для поиска новых частиц, но и изучение очень редких распадов, нарушений симметрии. Для этого требуются коллайдеры на precision frontier, производящие большое количество таких редких событий, то есть обладающие высокой светимостью. Именно такими установками должны стать FCC-ee в ЦЕРН и "Супер С-Тау фабрика" в Новосибирске", - рассказывает РИА Новости Михаил Зобов, управляющий технологическими исследованиями Национальной лаборатории Фраскати Национального института ядерной физики (Италия).

Михаил Зобов окончил кафедру электрофизических установок МИФИ, где приобщился к ускорительной технике. Стажировался в Италии, после защиты диссертации уехал туда работать.

Три ускорителя в одном

Проект FCC предполагает строительство в одном тоннеле поэтапно трех циклических коллайдеров, пояснил РИА Новости Евгений Левичев, доктор физико-математических наук, заместитель директора Института ядерной физики Сибирского отделения Российской академии наук, соавтор проектов "Супер С-Тау фабрика" и FCC.

По словам Левичева, первым реализуют электрон-позитронный коллайдер (FCC-ee) на максимальную энергию до 180 ГэВ в пучке (рождение пары топ-антитоп-кварков). Установка предназначена для работы в низкой области энергий (45-180 ГэВ), но с огромной светимостью.

На втором этапе построят протонный коллайдер (FCC-hh) на энергию 100 ТэВ в системе центра масс, где на каждый пучок приходится 50 ТэВ.

Обсуждают и строительство третьей очереди - электрон-ионного коллайдера (FCC-eh).

"В целом проект хорошо проработан и кажется реалистичным. Институт ядерной физики им. Г. И. Будкера Сибирского отделения РАН принимает в нем активное участие на всех этапах", - прокомментировал ученый.

Сплющить и закрутить

В основе электрон-позитронного FCC-ee лежит принцип столкновения пучков заряженных частиц crab waist (можно перевести как "крабовая перетяжка", "крабовый фокус"), сформулированный в Национальной лаборатории Фраскати.

"Первоначально этот принцип предложил Панталео Раймонди (итальянский физик, бывший глава отдела ускорителей Национальной лаборатории, теперь - директор Европейского центра синхротронного излучения (ESRF) в Гренобле. - Прим. ред.). Он же провел предварительное упрощенное моделирование, увидел значительный эффект и, чтобы понять его лучше, обратился ко мне. После моделирования я предположил, что все дело в подавлении нелинейных резонансов, возникающих при взаимодействии пучков заряженных частиц, и поделился соображениями с Дмитрием Шатиловым из ИЯФ в Новосибирске. В результате интенсивного обсуждения появилась статья с объяснением наблюдаемых эффектов", - излагает историю открытия Зобов.

Летящие и сталкивающиеся в коллайдере сгустки частиц стремятся разлететься, отклониться, что снижает светимость. Ее увеличение обычными методами, например, повышением интенсивности сгустков и уменьшением их размеров в месте встречи, приводит к резонансам, росту хаоса из-за их сильного нелинейного электромагнитного взаимодействия. Кроме того, чем сильнее стараешься сфокусировать пучок, тем больше эффект песочных часов, уменьшающий светимость при конечной длине сгустков.

Если в месте встречи пучки электронов и позитронов сталкивать под углом, а затем еще и закрутить их в самом тонком участке с помощью двух шестиполюсных магнитов (секступолей), то эти негативные эффекты можно подавить и значительно увеличить светимость, а значит, частоту рождения событий.

"Принцип назван по аналогии со схемой Crab crossing, использованной в японском коллайдере KEKB, где сталкивающиеся пучки разворачиваются по отношению к направлению движения и движутся как бы "боком". В нашем случае таким образом искажаются оптические функции, когда положение фокальной плоскости изменяется по отношению к направлению движения", - уточняет Михаил.

Новую идею воплотили при строительстве электрон-позитронного коллайдера DAФNE (фабрика фи-мезонов) в Италии. Полученный там опыт ученые признали успешным и готовым к масштабированию.

Принцип crab waist берут на вооружение в "Супер С-Тау фабрике" - установке класса мегасайенс, которую построят в Новосибирске.

"Именно новосибирские коллеги предложили этот принцип для FCC-ee. Их вклад в проект значительный, они работают над зоной взаимодействия пучков, изучают процессы, возникающие при столкновениях частиц, исследуют нелинейную динамику частиц, монохроматизацию и многое другое", - подчеркивает Зобов.

Шестнадцать тесла

Постройка нового ускорителя FCC-hh в принципе возможна, однако потребуется соединить идеи и технологии, которые до того применялись по отдельности. Придется ступить и на неизученную территорию, например, создать сверхпроводящие дипольные магниты, индуцирующие поле до 16 тесла. Их установят в тоннеле, чтобы разгонять и направлять пучки частиц. Для сравнения - магниты на БАК индуцируют восемь тесла, в пятнах на Солнца магнитная индукция достигает десяти тесла.

В ЦЕРН запустили программу по достижению 16 тесла, сделав ставку на ниобий-олово (Nb3Sn), промышленное производство которого налажено благодаря Международному экспериментальному термоядерному реактору (ИТЭР). Сверхпроводящие свойства этого соединения открыли раньше, чем у ниобий-титана, "рабочей лошадки низкотемпературной сверхпроводимости", но долгое время применяли только в исследовательских магнитах.

После открытия способности ниобий-олова индуцировать магнитное поле примерно до 20 тесла материал стал интересен промышленности.

Для магнитов ИТЭР понадобилось шестьсот тонн ниобий-олова. Из них 120 тонн поставила Россия.

По словам заведующего отделением сверхпроводящих проводов и кабелей ВНИИ кабельной промышленности из Подольска Виталия Высоцкого, для достижения 16 тесла нужно повысить плотность тока в сверхпроводнике в три с лишним раза по сравнению с ИТЭР.

"Это возможно при использовании так называемой технологии с внутренним источником олова", - отмечает Высоцкий.

С ЦЕРН в этом проекте сотрудничает ВНИИНМ им. А. А. Бочвара, а ВНИИКП готовится делать кабели из изготовленного в России Nb3Sn-провода.

Магниты представляют собой огромные катушки кабелей, внутри которых уложено и скручено особым образом множество тоненьких проволочек. Чтобы добиться сверхпроводимости, катушки нагревают несколько дней при температуре 650 градусов Цельсия. В 2015-м из ниобий-олова удалось создать опытный образец сверхпроводника, сгенерировавшего поле 16,2 тесла.

По расчетам ЦЕРН, для исследований и экспериментов в ближайшие пять лет потребуется около шести тонн ниобий-олова. На обеспечение коллайдера FCC-hh - порядка десяти тысяч тонн. Это хороший шанс для развития отрасли во всем мире.

Сверхпроводники понадобятся для создания высокочастотных резонаторов, увеличивающих энергию пучка. И магниты, и резонаторы нужно будет охлаждать жидким гелием, что, учитывая размер установки, представляет собой нетривиальную задачу и очередной вызов для мировой высокотехнологичной промышленности.

Конкуренты поджимают

Между тем у FCC есть конкуренты. В 2013 году сходную по дизайну фабрику Хиггса задумали в Китае. Ее хотели реализовать в тоннеле длиной 54 километра на энергии 70 ТэВ, но в прошлом году тоннель увеличили до ста километров.

"Думаю, будет соревнование. Пока в FCC-ee закладывается гораздо более высокая светимость. Похожая ситуация складывалась и с В-фабриками: еще работал коллайдер CESR в Корнеллском университете США, а уже строили два новых - PEP-II в Стэнфорде (США) и KEKB в Японии. Тогда говорили, что это хорошо, поскольку таким образом происходит взаимопроверка полученных результатов. Правда, Нобелевскую премию получили только японцы", - рассказывает Зобов.

В Японии хотят построить и электрон-позитронный международный линейный коллайдер (International Linear Collider, ILC).

"У циклических и линейных коллайдеров свои особенности. Например, на FCC-ee можно достичь более высокой светимости на энергии Хиггса, а в ILC - более высокой энергии, поскольку нет потерь на синхротронное излучение", - продолжает ученый.

"На самой, как считается, интересной энергии рождения бозона Хиггса (120 ГэВ) FCC-ee намного более перспективен, чем ILC, поскольку его светимость почти в сто раз больше. В пользу FCC-ee говорит и то, что он основан на хорошо проверенной технологии циклических машин, в отличие от недостаточно освоенных линейных коллайдеров, а также то, что в высоких энергиях БАК пока не "увидел" ничего нового и необычного", - поясняет Евгений Левичев.

"Посмотрим, какой из этих проектов профинансируют", - резюмирует Михаил Зобов.

Ускорители позволяют исследовать структуру материи с беспрецедентной детальностью, открывать новые частицы, изучать силы природы и главное - получить представление о том, что происходило в момент рождения Вселенной. Последнее обстоятельство взволновало общественность в период строительства БАК. Не родится ли в ускорителе при попытке смоделировать Большой взрыв черная дыра, которая поглотит Землю?

Вряд ли подобных вопросов избегут авторы идеи FCC. А значит, в ближайшую четверть века (столько как минимум уйдет на строительство грандиозного коллайдера) нас ждет небывалый всплеск интереса к ядерной физике и загадкам мироздания.


Свежие новости Украины на сегодня и последние события в мире экономики и политики, культуры и спорта, технологий, здоровья, происшествий, авто и мото

Вверх