Новости и события » Общество » Тяга к звездам

Тяга к звездам

Тяга к звездам

Освоение космоса - возможно, самая сложная из технологических задач, когда-либо стоявших перед человечеством. Проблем с ней не перечесть, но первая из них, конечно, проблема запуска космических аппаратов с Земли и их передвижения в космосе. И хотя современные реактивные двигатели являются настоящими шедеврами технологий, соединяющими самые последние достижения в области химии, физики, материаловедения и множества других областей, их эффективность, тяга и расход топлива, увы, не позволяют всерьез говорить об освоении даже Солнечной системы, не говоря уж об огромных пространствах Вселенной. Будущее требует принципиально новых решений.

Реактивно!

Принцип работы реактивного двигателя настолько прост, что в элементарном виде его собирают даже школьники в кружках юных техников. Однако настоящий, мощный ракетный реактивный двигатель - продукт колоссальной сложности, в полной мере производство которого до сих пор освоили лишь три страны мира - СССР (Россия), США и Китай.

В отличие от привычных всем двигателей внутреннего сгорания, в реактивных нет ни цилиндров, ни поршней, создающих вращательное движение. В основе их действия лежит закон сохранения импульса, который вытекает из Второго закона Ньютона: «Сила действия равна силе противодействия». Тяга создается мощным потоком частиц, выбрасываемых в ходе сгорания топлива. Вылетая в одну сторону, эти частицы придают ракете или космическому аппарату ускорение, направленное в противоположную сторону. Чем больше масса и ускорение потока частиц - тем больше создаваемая ими реактивная тяга.

В традиционном реактивном двигателе, первые из которых были разработаны еще до Второй Мировой войны, поток частиц представляет собой раскаленный газ, продукт реакции топлива и окислителя. Эта плазма, вырывающаяся из сопел реактивного двигателя, может образовываться из твердого или жидкого топлива - соответственно, химические двигатели различают твердотопливные и жидкостные.

Вначале было твердое топливо

Исторически первым видом реактивных двигателей стали твердотопливные. Первые из них появились еще в древнем Китае, где использовались для запуска фейерверков, а со Средних веков они встречаются и в Европе, где с их помощью доставляли заряды для бомбардировки крепостей противника. Главной хитростью при этом было поддержание горения, не переходящего во взрыв, который моментально высвободил бы энергию топлива и разрушил ракету. Поэтому для заряда использовался «модифицированный» порох с пониженным содержанием нитрата и серы, но повышенным количеством угля. Такая смесь горит очень мощно и быстро, но - при должной осторожности - не взрывается.

В современных твердотопливных двигателях, разумеется, смеси используются намного более эффективные - например, такая: перхлорат аммония (окислитель, около 70% по весу), алюминий (основное топливо, 16%), оксид железа (катализатор, 0,4%), полимеры и эпоксиды (обеспечивают контакт топлива и окислителя и равномерность горения, около 14%). Используется и сложная конфигурация расположения твердых компонентов, в форме многоконечной звезды, при которой достигается большая площадь поверхности контакта топлива с окислителем и, следовательно, высокая скорость сгорания.

Твердотопливные двигатели дешевы, просты и безопасны, однако однажды запущенный процесс горения уже невозможно ни остановить, ни контролировать. Поэтому сегодня их чаще используют не для космических, а, скажем, для межконтинентальных баллистических ракет (МБР), работающих по принципу «выстрелил - и забыл». В космических же носителях обычно устанавливаются двигатели жидкостные.

Жидкое топливо: старт космической эры

Первые жидкостные реактивные двигатели (ЖРД) стали появляться в 1920-х годах, благодаря работам знаменитого физика Роберта Годдарда, в честь которого сегодня назван один из крупнейших исследовательских центров NASA. Годдарду удалось решить целый ряд проблем, связанных с конструированием и использованием таких двигателей, включая накачку топлива и охлаждение, а главное - создать принципиальную схему такого двигателя.

Схема проста до гениальности: жидкое топливо (Годдард использовал бензин) и жидкий окислитель (кислород) помещаются в раздельные баки, откуда с помощью специальных насосов по раздельным каналам подаются в камеру сгорания. Здесь происходит реакция, раскаленные продукты которой на большой скорости вылетают из сопла, создавая тягу.

Конечно, в реальности современный ЖРД - система куда более сложная, нежели эта принципиальная схема Годдарда. Достаточно сказать, что в качестве топлива и окислителя в них используются сжиженные газы, которые необходимо держать при низкой температуре и моментально нагревать перед подачей в камеру сгорания. Для этого найдены весьма изощренные технические решения - например, в соплах некоторых двигателей высверливаются каналы, по которым топливо течет, нагреваясь от раскаленного сопла. Такая технология настолько сложна, что ни американские, ни китайские двигателестроители ее до сих пор не освоили.

Математика шаттлов.

Тяга к звездам

Тяга к звездам

Тяга к звездам

NASA Школьники


Свежие новости Украины на сегодня и последние события в мире экономики и политики, культуры и спорта, технологий, здоровья, происшествий, авто и мото

Вверх