Новости и события » Общество » Жизнь под микроскопом: зачем замораживать молекулы

Жизнь под микроскопом: зачем замораживать молекулы

Жизнь под микроскопом: зачем замораживать молекулы

Нобелевскую премию по химии в 2017 году присудили за разработку метода криоэлектронной микроскопии, позволяющего восстановить структуру биомолекул. В России единственным современным криомикроскопом располагает Курчатовский институт. Как этот прибор действует и что с его помощью исследуют, выяснило РИА Новости.

Мгновенная заморозка

Образец, представляющий собой тонкую пленку раствора, где плавают белки, вирусы или макромолекулярные комплексы, помещают в жидкий этан при температуре минус 182,8 градуса Цельсия. Раствор с биомолекулами не кристаллизуется, а превращается в аморфный лед.

"По сути, криомикроскоп - обычный просвечивающий электронный микроскоп, но с очень эффективным детектором и рядом конструктивных модификаций, позволяющих исследовать образец при криогенных температурах, вплоть до температуры кипения жидкого азота - минус 195,75 °C. Пучок ускоренных электронов проходит через тонкую пластинку образца, в нашем случае - аморфный лед с объектами. При этом фаза и амплитуда падающей волны меняются. В конечном итоге мы получаем многочисленные проекции отдельных молекул, которые по-разному ориентированы во льду", - объясняет Евгений Пичкур, инженер Ресурсного центра зондовой и электронной микроскопии Курчатовского института.

После предварительной настройки микроскоп делает множество сканов исследуемых объектов, своеобразных фотографий-проекций, получаемых благодаря взаимодействию электронов с атомами образца. Программа их обсчитывает и формирует 3D-изображение объекта, например белка.

Следует понимать, что этот объект - модель, а не изображение вроде фотографии. Фактически модель представляет собой усредненный образ изучаемой молекулы. Почему ему доверяют и считают невероятно точным? Дело в том, что образец с изучаемыми объектами тщательно готовят к исследованию на криомикроскопе. Обычно стараются получить как можно более чистый и гомогенный раствор, где молекулы находятся практически в одинаковых пространственных конформациях. Конечно, положение разных атомов в биомолекулах немного отличается. Но при расчетах компьютер усредняет данные, строя универсальную модель.

Ключ к жизни

"Нам удалось создать модель бактериальной рибосомы с разрешением лучше трех ангстрем (ангстрем - одна десятимиллиардная доля метра. - Прим. ред.). Уровень вполне мировой для подобного рода объектов. А еще это первая структура рибосомы с почти атомным разрешением, полученная целиком в России при помощи криоэлектронной микроскопии. Такое разрешение позволило визуализировать антибиотик, представляющий собой буквально песчинку по сравнению с рибосомой - крупным макромолекулярным комплексом, отвечающим за синтез белка во всех живых клетках", - рассказывает эксперт.

Механизм действия около 40% антибиотиков основан на том, что они мешают рибосомам бактерий синтезировать белки, и патоген погибает. Криоэлектронная микроскопия визуализировала это на молекулярном уровне.

"Надеемся, дальнейшая работа поможет продвинуться в понимании механизма биосинтеза белка, а также разработке новых более эффективных антибиотиков", - говорит Евгений Пичкур.

По его мнению, через пять-десять лет технологии достигнут того, что мы увидим динамичную картинку крохотного биологического объекта. Визуализация быстрых, хотя бы порядка миллисекунд, процессов - исключительно важный этап, для которого еще предстоит разработать соответствующие инструменты и подходы.


Магія східної кухні: особливості та традиції

Магія східної кухні: особливості та традиції

Східна кухня відома різноманіттям ароматів та смаків. Вона заснована на глибоких традиціях, історії та має особливості приготування. Звички формувалися впродовж багатьох століть під впливом різних культур та географічних особливостей. Вони присутні в кожній...

сегодня 15:32

Свежие новости Украины на сегодня и последние события в мире экономики и политики, культуры и спорта, технологий, здоровья, происшествий, авто и мото

Вверх