Новости и события » Общество » Идеальный лазерный материал прошел проверку

Идеальный лазерный материал прошел проверку

Идеальный лазерный материал прошел проверку

Недавно были обнаружены материалы, названные Вейлевскими полуметаллами, в которых носители заряда ведут себя подобно электронам и позитронам в ускорителях заряженных частиц. Ученые из МФТИ и Института Иоффе теоретически доказали, что эти материалы - идеальные усиливающие среды для лазеров.

Работа опубликована в журнале Physical Review B.

Начало XXI века в физике - это зачастую поиск явлений из мира элементарных частиц в подручных материалах. Электроны в некоторых кристаллах по своим свойствам будто разогнаны до околосветовых скоростей, как в ускорителях частиц, а в других они и вовсе могут напоминать по свойствам материю черных дыр.

Физики из МФТИ вывернули этот поиск наизнанку и доказали, что запрещенные реакции для элементарных частиц могут оставаться запрещенными и в кристаллических материалах - Вейлевских полуметаллах. Конкретно речь идет о реакции взаимного уничтожении частиц и античастиц без излучения света. Благодаря этому запрету Вейлевский полуметалл может оказаться идеальной усиливающей средой для лазера.

В полупроводниковом лазере излучение возникает при взаимном уничтожении электронов и положительно заряженных частиц - так называемых дырок. Однако излучение света при встрече электрона и дырки не является единственно возможным исходом.

Так, пара может отдать свою энергию на раскачку колебаний атомов или на нагрев остальных электронов. Последний процесс называется Оже-рекомбинацией (в честь французского физика Пьера Оже). Именно он ограничивает эффективность существующих лазеров видимого и инфракрасного диапазона и делает практически невозможным создание лазеров терагерцового диапазона.

Действительно, Оже-рекомбинация «съедает» электрон-дырочные пары, которые иначе могли бы породить свет, к тому же она сильно греет полупроводник.

Поиск «волшебного материала», в котором Оже-рекомбинация идет медленно по сравнению с излучательной рекомбинацией, не прекращается на протяжении уже почти сотни лет. Путеводной в этом поиске является идея, высказанная Полем Дираком в 1928 году.

Он разработал теорию, которая предсказывала, помимо уже известного к тому времени электрона, существование его положительно заряженного двойника - позитрона, открытого всего четыре года спустя.

Согласно расчетам Дирака, взаимное уничтожение электрона и позитрона возможно только с испусканием света, но не с передачей энергии другим электронам. Именно поэтому поиск «волшебного лазерного материала» сводился в значительной степени к поиску аналогов дираковских электрона и позитрона в полупроводниках.

«В 1970-е годы надежды возлагались на соли свинца, в 2000-е - на графен. Однако и здесь, и там вскрывались отклонения свойств частиц в полупроводниках от идеи Дирака. Особенно нетривиальным оказался случай графена, где сжатие электронов и дырок в двумерную плоскость открывает возможность Оже-рекомбинации.

В двумерном мире частицам слишком тесно, сложно избежать столкновения. В своей работе мы показываем, что в Вейлевских полуметаллах аналогия с электронами и позитронами Дирака реализуется наиболее полно», - говорит руководитель исследования, заведующий лабораторией оптоэлектроники двумерных материалов Дмитрий Свинцов.

При взаимном уничтожении электронов и дырок происходит излучение / ©Елена Хавина / Пресс-служба МФТИ

Электрон и дырка в полупроводнике и вправду похожи на электрон и позитрон из теории Дирака, хотя бы знаками заряда. Но этого недостаточно для запрещения Оже-рекомбинации. Необходимо, чтобы законы дисперсии электрона и дырки в полупроводнике совпали с таковыми для частиц Дирака.

Закон дисперсии - это зависимость кинетической энергией частицы от ее импульса. Она кодирует всю информацию о движении частиц и реакциях, в которые они могут вступать.

Для всех объектов в классической механике - камней, планет, космических кораблей - закон дисперсии является квадратичным. То есть увеличение импульса в два раза требует четырехкратного увеличения энергии.

Таким же закон дисперсии является в «обычных» полупроводниках - кремнии, германии, арсениде галлия. А вот для фотонов - переносчиков света - закон дисперсии является линейным. Отсюда сразу следует, что все фотоны движутся с одной скоростью - скоростью света.

Электроны и позитроны в теории Дирака объединяют свойства камней и фотонов: при малых энергиях их закон дисперсии квадратичен, а при больших - линеен. Однако «забросить» электрон на линейный участок закона дисперсии можно было только в ускорителе заряженных частиц.

Недавно были обнаружены материалы, которые можно образно назвать «карманными ускорителями» заряженных частиц. К ним относят графен- «ускоритель на кончике карандаша» и его трехмерные аналоги - полуметаллы Вейля (арсенид тантала, фосфид ниобия, теллурид молибдена).

В них закон дисперсии электронов и дырок является линейным уже начиная с бесконечно малых энергий. То есть переносчики тока ведут себя подобно фотонам с электрическим зарядом. Эти частицы также можно считать аналогами электрона и позитрона в теории Дирака, однако их масса стремится к нулю.

Авторы работы доказали, что запрет Оже-рекомбинации будет работать в полуметаллах Вейля даже несмотря на нулевую массу частиц. Предвидя возражения о том, что закон дисперсии в реальных кристаллах всегда имеет более сложную форму, авторы пошли дальше и рассчитали вероятность «остаточной Оже-рекомбинации», появляющейся из-за отклонений закона дисперсии от линейного.

В зависимости от концентрации электронов эта вероятность, как оказалось, может быть на 4 порядка медленнее, чем в известных полупроводниковых материалах. То есть идея Дирака, по их расчетам, в этих материалах действительно работает с высокой точностью.

«Мы знакомы с горьким опытом предшественников, которые надеялись на точное воспроизведение закона дисперсии, предсказанного Дираком, в реальных кристаллах. Поэтому и сделали все возможное, чтобы выявить возможные лазейки для Оже-процесса в этих новых материалах, полуметаллах Вейля.

Такие лазейки имеются - например, в реальном материале существует несколько „сортов" электронов, которые отличаются скоростями. Медленные электрон и дырка могут сгорать, а быстрые - подхватывать энергию. Однако эта возможность, по нашим расчетам, является маловероятной», - добавляет Дмитрий Свинцов.

Получающееся время жизни электрон-дырочной пары оказалось около десятка наносекунд. В бытовом понимании это очень мало, но для лазерной физики - огромная величина. В привычных материалах, используемых в лазерных технологиях дальнего инфракрасного диапазона, электроны и дырки живут в тысячи раз меньше.

Возможность существенного продления времени жизни неравновесных электронов и дырок в новых материалах открывает перспективы для их использования в новых типах длинноволновых лазеров.

Научная статья: «Relativistic suppression of Auger recombination in Weyl semimetals»; A. N. Afanasiev, A. A. Greshnov, and D. Svintsov; Phys. Rev. B 99, 115202 - Published 4 March 2019

Идеальный лазерный материал прошел проверку

Германия


Магія східної кухні: особливості та традиції

Магія східної кухні: особливості та традиції

Східна кухня відома різноманіттям ароматів та смаків. Вона заснована на глибоких традиціях, історії та має особливості приготування. Звички формувалися впродовж багатьох століть під впливом різних культур та географічних особливостей. Вони присутні в кожній...

сегодня 15:32

Свежие новости Украины на сегодня и последние события в мире экономики и политики, культуры и спорта, технологий, здоровья, происшествий, авто и мото

Вверх