Новости и события » Общество » Искусственный интеллект научили оценивать свежесть говядины

Искусственный интеллект научили оценивать свежесть говядины

Искусственный интеллект научили оценивать свежесть говядины

Употребление испорченной говядины опасно, но сейчас не существует простых и эффективных методов оценки свежести говядины. Ученые из Института науки и техники Кванджу (GIST), Южная Корея, решили проблему, разработав уникальный ИИ (искусственный интеллект).

Хотя говядина - один из самых популярных продуктов питания во всем мире, она может представлять опасность. Неправильное хранение и употребление в пищу несвежей вырезки приводит к серьезным проблемам со здоровьем. К сожалению, у доступных методов проверки свежести говядины есть много недостатков. Например, химический анализ или оценка микробной популяции занимают слишком много времени и требуют профессиональных навыков. С другой стороны, неразрушающие говядин методы, основанные на ближней инфракрасной спектроскопии, требуют дорогостоящего и сложного оборудования. Может ли искусственный интеллект стать ключом к более рентабельному способу оценки свежести говядины?

В Южной Корее группа ученых разработала новую стратегию, сочетающую глубокое обучение со спектроскопией диффузного отражения (DRS) - относительно недорогой оптической техникой. В отличие от других типов спектроскопии, DRS не требует сложной калибровки. Вместо этого ее можно использовать для количественной оценки части молекулярного состава образца, используя только доступный и легко настраиваемый спектрометр. Детали нового метода публикует Food Chemistry.

Чтобы определить свежесть образцов говядины, ученые использовали измерения DRS для оценки пропорции различных форм миоглобина в мясе. Миоглобин и его производные - это белки, которые, в основном, отвечают за цвет мяса и его изменения в процессе разложения. Однако ручное преобразование измерений DRS в концентрации миоглобина для окончательного определения свежести образца - не очень точная стратегия, и именно здесь в игру вступает глубокое обучение.

Сверточные нейронные сети (CNN) - это широко используемые алгоритмы искусственного интеллекта, которые учатся на предварительно классифицированном наборе данных - обучающем наборе и находить скрытые закономерности в данных для классификации новых входных данных. Чтобы обучить CNN, исследователи собрали данные о 78 образцах говядины в процессе их порчи, регулярно измеряя их pH (кислотность) вместе с профилями DRS. Они объединили полученные данные с оценками миоглобина. В итоге, алгоритм глубокого обучения правильно классифицирует свежесть образцов говядины за считанные секунды примерно в 92% случаев.


Магія східної кухні: особливості та традиції

Магія східної кухні: особливості та традиції

Східна кухня відома різноманіттям ароматів та смаків. Вона заснована на глибоких традиціях, історії та має особливості приготування. Звички формувалися впродовж багатьох століть під впливом різних культур та географічних особливостей. Вони присутні в кожній...

сегодня 15:32

Свежие новости Украины на сегодня и последние события в мире экономики и политики, культуры и спорта, технологий, здоровья, происшествий, авто и мото

Вверх