Генетическая флешка: как записать книгу на ДНК
Рост объема цифровой информации побуждает ученых искать более компактные способы ее записи и хранения. А что может быть компактнее ДНК? РИА Новости вместе с экспертом выяснило, как закодировать слова нуклеотидами и сколько данных вмещает одна молекула.
Основания-коды
ДНК представляет собой последовательность нуклеотидов. Их всего четыре: аденин, гуанин, тимин, цитозин. Для кодирования информации каждому из них приписывают цифру-код. Например, тимин - 0, гуанин - 1, аденин - 2, цитозин -3. Кодирование начинается с того, что все буквы, цифры и изображения переводят в двоичный код, то есть последовательность нулей и единиц, а их уже - в последовательность нуклеотидов, то есть четверичный код.
Можно применять только три нуклеотида для постройки кода (троичный код), а четвертым - разбивать последовательности на части. Есть вариант с построением оснований в виде двоичного кода, когда два из них соответствуют нулю, а два - единице.
Для считывания применяют несколько методик. Одна из самых распространенных заключается в том, что цепочку молекулы ДНК копируют с помощью оснований, у каждого из которых есть цветовая метка. Затем очень чувствительный детектор считывает данные, и по цветам компьютер восстанавливает последовательность нуклеотидов.
"Молекула ДНК очень емкая. Даже у бактерии она, как правило, содержит около миллиона оснований, а у человека - целых три миллиарда. То есть каждая клетка человека несет объем информации, сопоставимый с вместимостью флешки. И таких клеток у нас триллионы. В ДНК можно записать огромное количество данных, но запись и чтение с такого носителя пока происходят слишком медленно и дорого стоят", - рассказывает Александр Панчин, кандидат биологических наук, старший научный сотрудник Института проблем передачи информации имени А. А. Харкевича РАН.
Плотность записи растет
В июне 1999 года в журнале Nature вышла статья американских ученых, разработавших технику отправки секретных сообщений с помощью ДНК. Они синтезировали молекулу, включив в нее последовательность нуклеотидов, сформированную с использованием четверичного кода. Секретную ДНК в составе смеси отправили в другую лабораторию. Ее сотрудники, используя особые химические ключи, нашли нужную молекулу и извлекли из нее информацию.
"Вообще, есть два подхода к записи данных на ДНК. Первый, когда вы синтезируете совершенно новую ДНК, используя химический синтезатор. По команде компьютера нуклеотиды добавляются в раствор в определенном порядке, и постепенно "вырастает" нужная цепочка оснований. Во втором случае кодируются данные в уже существующей ДНК какого-то организма", - поясняет Панчин.
В мае 2010 года группа Крейга Вентера, который первым составил карту генома человека, опубликовала работу о создании искусственной бактерии. Они взяли за основу очищенную от генома бактериальную клетку и поместили туда сформированную последовательность оснований. Получилась новая бактерия, вполне деятельная и живая, отличающаяся от обычной только тем, что ее ДНК создали вручную. Кроме того, коллектив продемонстрировал чувство прекрасного, записав с помощью четверичного кода в ДНК бактерии свои имена и цитаты из классических произведений.
В 2012 году группа под руководством молекулярного биолога Джорджа Черча подошла к делу более основательно и закодировала в ДНК книгу "Регенезис: как синтетическая биология заново откроет природу и нас самих" объемом в 52 тысячи слов, несколько картинок и одну программу, написанную на Java. Они применяли двоичный код. Общий объем данных составил 658 килобайт. Плотность информации оказалась равна почти 10 18 байт на грамм молекул. Для сравнения: жесткий диск объемом 10 12 байт весит около сотни граммов. Главный недостаток метода - нестабильность записанной информации.
"Молекула ДНК склонна мутировать, что понижает надежность хранения данных. Особенно если носитель ДНК - живая клетка, способная к делению: при удвоении ДНК ошибки закрадываются особенно часто. Надежность хранения данных повысится, если иметь тысячи копий одного и того же послания. Ну или просто хранить ДНК, скажем, в морозильнике. При низких температурах способность молекулы к мутации значительно снижается", - поясняет эксперт.
Кроме того, информация иногда теряется при чтении. Ошибки могут быть химического плана, когда к элементу присоединяется неправильное основание, так и чисто расчетными, то есть зависящими от компьютера.
Дорого, надежно
В марте 2017 года журнал Science опубликовал статью американских ученых, которым удалось записать 2*10 17 байт на один грамм ДНК. Биологи подчеркивают, что не потеряли ни байта. Говоря проще, что записали, то и получили на выходе.
Для обычного пользователя "генетическая флешка" пока недоступна, потому что хранить информацию на ней очень дорого, а скорость чтения/записи - низкая. По оценкам ученых, считывание лишь одного мегабайта требует около трех с половиной тысяч долларов и нескольких часов времени.
К несомненным преимуществам записи информации на ДНК относится огромная плотность хранения данных, а также стабильность носителя - правда, лишь при низких температурах.