Физики впервые увидели, как нейтрино сталкивается с ядром атома
Российские и зарубежные физики впервые смогли зафиксировать столкновения нейтрино с ядрами атомов, наблюдения за которыми подтвердили общепринятые теоретические выкладки об их поведении, говорится в статье, опубликованной в журнале Science.
"Почему это открытие мы совершили только сегодня, а не 43 года назад? То, что происходит во время этого столкновения, почти невозможно заметить. В целом, его последствия можно сравнить с тем, что происходит с шаром для боулинга, когда по нему ударяет шарик от пинг-понга. Даниель Фридман, открывший это взаимодействие на уровне теории, писал, что редкая частота столкновений и шумы вряд ли позволят его увидеть", - рассказывает Хуан Коллар (Juan Collar) из университета Чикаго (США).
createElement(c); g.src = d; g.type = "application/javascript"; g.async =!0; h = b.getElementsByTagName(c)[0]; h.parentNode.insertBefore(g, h); a[f] = []; a[e] = function () { a[f].push(Array.prototype.slice.apply(arguments)); } }) (window, document, "script", (document.location.protocol === "https:"? "https:": "http:") + "//cdn01.nativeroll.tv/js/seedr-player.min.js", "SeedrPlayer", "seedrInit");
Нейтрино представляют собой мельчайшие элементарные частицы, которые "общаются" с окружающей материей только посредством гравитации и так называемых слабых взаимодействий, проявляющихся лишь на расстояниях, существенно меньше размеров ядра атома. В середине прошлого века ученые открыли три вида таких частиц - тау, мюонные и электронные нейтрино и их "злые близнецы"-антинейтрино.
Нейтрино, благодаря их малым размерам и необычным свойствам, фактически всегда пролетают сквозь любые формы материи - если взять брусок свинца длиной в световой год, что равно примерно 1,5 триллионов километров, и пропустить через него поток этих частиц, лишь половина из них не достигнет его конца. По этой причине нейтрино часто называют частицами-"призраками".
Тем не менее, столкновения нейтрино и атомов все же должны происходить - при определенных условиях, как выяснил известный американский физик Даниель Фридман еще в 1974 году, нейтрино будет взаимодействовать с ядром атома, одновременно обмениваясь со всеми его протонами и нейтронами так называемыми Z-бозонами, переносчиками импульса.
В результате этого нейтрино "отскочит" от ядра атома, а все ядро атома получит дополнительный импульс и начнет двигаться в противоположную сторону, подобно тому, что происходит со сталкивающимися бильярдными шарами.
Нейтрино, как выяснилось впоследствии, может сталкиваться с материей и иными путями, однако подобные "коллективные" взаимодействия всех нейтронов и протонов внутри ядер и одиночных нейтрино, как показывали расчеты Фридмана, должны происходить чаще всего. Несмотря на это, ученые безуспешно искали их более 40 лет.
Как заметили ученые, повышение "кучности" и интенсивности источника нейтрино позволяет добиться заметно большей частоты столкновения частиц с атомами и увеличить вероятность обнаружения их следов по сравнению с увеличением габаритов и массы самого детектора.
Другим секретом успеха российских и американских физиков стало то, что они не стали использовать ядра тяжелых элементов, традиционно лучше взаимодействующие с нейтрино, а относительно легкий цезий, за колебаниями ядра которого было проще наблюдать. Благодаря этому Коллар и другие участники коллаборации COHERENT смогли уменьшить детектор до почти "карманных" размеров и решили загадку почти полувековой давности.
Собрав несколько десятков таких детекторов, ученые разместили их в коридоре рядом с источником нейтронов в Национальной лаборатории Оак-Ридж, построенной в штате Теннесси в разгар второй мировой войны для создания атомной бомбы. Этот коридор, как отмечают Коллар и его коллеги, экранирован многометровым слоем бетона и гальки, благодаря чему он не пропускает нейтроны из реактора, но не препятствует движению рекордно плотного потока нейтрино, рождающихся в этой установке.
Наблюдая за свечением кристаллов, внутри которых находились атомы цезия, на протяжении 15 месяцев, физикам удалось доказать, что эти вспышки света возникали в результате столкновения пучков нейтрино с ядрами металла и передачи части кинетической энергии "частиц-призраков" неподвижному цезию.
Эти столкновения, как отмечают исследователи, в целом происходили так, как предсказывает Стандартная модель. С другой стороны, Коллар и его коллеги считают, что дальнейшие наблюдения за подобными столкновениями все же могут вывести ученых на следы "новой физики", а также позволят понять, какую роль нейтрино играют в рождении сверхновых и других катастрофических событий в космосе.